Crystal Structure of the Flagellar Rotor Protein FliN from Thermotoga maritima†

Perry N. Brown, 1‡ Michael A. A. Mathews, 2‡ Lisa A. Joss, 2
Christopher P. Hill, 2* and David F. Blair 1*

Departments of Biology 1 and Biochemistry, 2 University of Utah, Salt Lake City, Utah

Received 14 October 2004/Accepted 4 January 2005

FliN is a component of the bacterial flagellum that is present at levels of more than 100 copies and forms the bulk of the C ring, a drum-shaped structure at the inner end of the basal body. FliN interacts with FliG and FliM to form the rotor-mounted switch complex that controls clockwise-counterclockwise switching of the motor. In addition to its functions in motor rotation and switching, FliN is thought to have a role in the export of proteins that form the exterior structures of the flagellum (the rod, hook, and filament). Here, we describe the crystal structure of most of the FliN protein of Thermotoga maritima. FliN is a tightly intertwined dimer composed mostly of β sheet. Several well-conserved hydrophobic residues form a nonpolar patch on the surface of the molecule. A mutation in the hydrophobic patch affected both flagellar assembly and switching, showing that this surface feature is important for FliN function. The association state of FliN in solution was studied by analytical ultracentrifugation, which provided clues to the higher-level organization of the protein. T. maritima FliN is primarily a dimer in solution, and T. maritima FliN and FliM together form a stable FliM1-C-FliN4 complex. Escherichia coli FliN forms a stable tetramer in solution. The arrangement of FliN subunits in the tetramer was modeled by reference to the crystal structure of tetrameric HrcQBC, a related protein that functions in virulence factor secretion in Pseudomonas syringae. The modeled tetramer is elongated, with approximate dimensions of 110 by 40 by 35 Å, and it has a large hydrophobic cleft formed from the hydrophobic patches on the dimers. On the basis of the present data and available electron microscopic images, we propose a model for the organization of FliN subunits in the C ring.

The bacterial flagellum is a complex assembly formed from about two dozen proteins having copy numbers ranging from a few to more than 10,000 (1, 6, 35, 41, 42). The FliN protein is a major component of the C ring, a drum-shaped structure at the bottom of the basal body that is approximately 45 nm in diameter and 15 nm high (19, 31, 68, 79, 81) (Fig. 1). FliN interacts with FliG and FliM to form the switch complex, which is essential for assembly of the flagellum and also for rotation and clockwise (CW)-counterclockwise (CCW) switching (27, 40, 59, 67, 71, 78). The switch complex attaches to the MS ring, which is in the cytoplasmic membrane and is formed from a single protein, FliF (24, 72). The precise locations of FliG, FliM, and FliN in the switch complex are unknown, but FliG and FliM are likely to be near the upper (membrane-proximal) part of the C ring, because FliG binds to FliF (18, 21, 33, 68) and also makes multiple contacts with FliM (9, 44-46, 70). The C-terminal domain of FliM is independently stable and forms the binding site for FliN (46, 70).

The sequence of events in flagellar assembly has been deduced from studies of mutants arrested at various steps (28, 37, 42, 62, 63). The MS ring is formed first (Fig. 1). The proteins that form the rod, hook, and filament are actively transported to their destinations by way of a central channel through the structure (41, 51). Export is driven by an apparatus at the base of the flagellum, which is evolutionarily related to the type III secretion system used by pathogenic bacteria for the export of virulence factors (8, 36, 41). This export apparatus is centered within the MS ring and is formed from six membrane proteins and at least three cytosolic proteins (Fig. 1) (42, 47). It assembles at about the same time as the switch complex, but the sequence of events is not known exactly. The proteins to be exported arrive in a partially folded state in association with specialized chaperones (2, 4, 5, 20). Energy for transport comes from the hydrolysis of ATP, which is catalyzed by the protein FliF (14, 17) and is regulated by the protein FliH (48). Although the C ring appears to be well separated from the membrane-bound parts of the export apparatus (30), FliN has been implicated in flagellar export. Proteins with sequence similarity to FliN are found in the virulence factor export apparatus of various species, where they presumably carry out functions related to export rather than motility (42, 65). A temperature-sensitive FliN mutant was unable to regrow flagellar filaments after shearing at the restrictive temperature, indicating that there was a failure in the export of flagellin or the flagellar cap protein (75).

Other mutations in FliN have a range of effects that depend on the expression level of the protein. Certain fliN mutations prevent rotation while allowing flagellar assembly when the protein is expressed at normal levels (27) but allow both assembly and rotation when the protein is overexpressed (40). When wild-type FliN is underexpressed, flagella are still as-
sembled, but their rotation is slow and irregular (65). These observations suggest that incomplete C rings are sufficient for flagellar assembly but cannot support normal motor rotation. The C-terminal parts of FliN (residue ~58 to the end) are best conserved and most important for function; a FliN fragment lacking 57 N-terminal residues supported swarming motility at about one-third the wild-type rate (65).

The molecular mechanisms of motor rotation, CW-CCW switching, and flagellar export are not understood, mainly due to a lack of structural information. Structures are known for relatively few flagellar proteins and for none of the export apparatus proteins except the chaperone FliS (15). To provide a structural basis for understanding the functions of FliN, we solved its structure by X-ray crystallography and studied its state of association by analytical ultracentrifugation. A stable complex of FliN with FliM was also characterized. The data obtained lead to a model for the structure of the C ring and highlight the functional importance of a prominent hydrophobic patch on the surface of FliN.

MATERIALS AND METHODS

Cloning and protein expression. The Thermotoga maritima homolog of fliN was identified first by a BLAST search of the unpublished genome data and then from the published genome sequence. In certain (mainly gram-positive) species the FliN homolog has additional N-terminal parts that make it about twice as large as it is in other species, and it is designated FliY (7). The T. maritima genome encodes two proteins (designated FliY-1 and FliY-2 in the annotated sequence) that together resemble FliN. The second of these is the homolog of FliN and was the subject of the present study. Constructs encoding residues 23 to 154 of FliN and FliM were obtained by PCR amplification of genomic DNA (a gift from R. Huber, University of Regensburg). Primer sequences for PCR were chosen to amplify full-length T. maritima FliN and FliM.

For purification of FliM plus FliN, clarified lysate (typically ~200 ml) was loaded directly onto a Q-Sepharose column (Pharmacia), which was washed with ~500 ml of 50 mM Tris-HCl (pH 8.0) and then developed with 0.1 to 1 M NaCl gradient in the same buffer. The FliN and FliM proteins eluted together; fractions containing the proteins were pooled, saturated (NH4)2SO4 was added to obtain a final (NH4)2SO4 concentration of 0.5 M. The solution was loaded onto a phenyl-Sepharose column equilibrated in 50 mM Tris-HCl (pH 8.0)–0.5 M (NH4)2SO4 and proteins were eluted with a 0.5 to 0 M (NH4)2SO4 gradient. Fractions containing FliN plus FliM were pooled, concentrated by ultrafiltration, and loaded onto a Superdex-200 column. The column was run in 50 mM Tris-HCl (pH 8.0)–200 mM NaCl. Fractions containing FliN plus FliM were identified by Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pooled, and concentrated by ultrafiltration.

For purification of FliN plus FliN, clarified lysate (typically ~200 ml) was loaded directly onto a Q-Sepharose column (Pharmacia), which was washed with ~500 ml of 50 mM Tris-HCl (pH 8.0) and then developed with 0 to 1 M NaCl gradient in the same buffer. The FliN and FliM proteins eluted together; fractions containing the proteins were pooled, and saturated (NH4)2SO4 was added to obtain a final (NH4)2SO4 concentration of 0.5 M. The solution was loaded onto a phenyl-Sepharose column equilibrated in 50 mM Tris-HCl (pH 8.0)–0.5 M (NH4)2SO4 and proteins were eluted with a 0.5 to 0 M (NH4)2SO4 gradient. Fractions containing FliN plus FliM were pooled, concentrated by ultrafiltration, and loaded onto a Superdex-200 column. The column was run in 50 mM Tris-HCl (pH 8.0)–200 mM NaCl. Fractions containing FliN plus FliM were identified by Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pooled, and concentrated by ultrafiltration.

For purification of FliM plus FliN, clarified lysate (typically ~200 ml) was loaded directly onto a Q-Sepharose column (Pharmacia), which was washed with ~500 ml of 50 mM Tris-HCl (pH 8.0) and then developed with 0 to 1 M NaCl gradient in the same buffer. The FliN and FliM proteins eluted together; fractions containing the proteins were pooled, and saturated (NH4)2SO4 was added to obtain a final (NH4)2SO4 concentration of 0.5 M. The solution was loaded onto a phenyl-Sepharose column equilibrated in 50 mM Tris-HCl (pH 8.0)–0.5 M (NH4)2SO4 and proteins were eluted with a 0.5 to 0 M (NH4)2SO4 gradient. Fractions containing FliN plus FliM were pooled, concentrated by ultrafiltration, and loaded onto a Superdex-200 column. The column was run in 50 mM Tris-HCl (pH 8.0)–200 mM NaCl. Fractions containing FliN plus FliM were identified by Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pooled, and concentrated by ultrafiltration.

For purification of FliM plus FliN, clarified lysate (typically ~200 ml) was loaded directly onto a Q-Sepharose column (Pharmacia), which was washed with ~500 ml of 50 mM Tris-HCl (pH 8.0) and then developed with 0 to 1 M NaCl gradient in the same buffer. The FliN and FliM proteins eluted together; fractions containing the proteins were pooled, and saturated (NH4)2SO4 was added to obtain a final (NH4)2SO4 concentration of 0.5 M. The solution was loaded onto a phenyl-Sepharose column equilibrated in 50 mM Tris-HCl (pH 8.0)–0.5 M (NH4)2SO4 and proteins were eluted with a 0.5 to 0 M (NH4)2SO4 gradient. Fractions containing FliN plus FliM were pooled, concentrated by ultrafiltration, and loaded onto a Superdex-200 column. The column was run in 50 mM Tris-HCl (pH 8.0)–200 mM NaCl. Fractions containing FliN plus FliM were identified by Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pooled, and concentrated by ultrafiltration.

For purification of FliN plus FliN, clarified lysate (typically ~200 ml) was loaded directly onto a Q-Sepharose column (Pharmacia), which was washed with ~500 ml of 50 mM Tris-HCl (pH 8.0) and then developed with 0 to 1 M NaCl gradient in the same buffer. The FliN and FliM proteins eluted together; fractions containing the proteins were pooled, and saturated (NH4)2SO4 was added to obtain a final (NH4)2SO4 concentration of 0.5 M. The solution was loaded onto a phenyl-Sepharose column equilibrated in 50 mM Tris-HCl (pH 8.0)–0.5 M (NH4)2SO4 and proteins were eluted with a 0.5 to 0 M (NH4)2SO4 gradient. Fractions containing FliN plus FliM were pooled, concentrated by ultrafiltration, and loaded onto a Superdex-200 column. The column was run in 50 mM Tris-HCl (pH 8.0)–200 mM NaCl. Fractions containing FliN plus FliM were identified by Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pooled, and concentrated by ultrafiltration.

For purification of FliM plus FliN, clarified lysate (typically ~200 ml) was loaded directly onto a Q-Sepharose column (Pharmacia), which was washed with ~500 ml of 50 mM Tris-HCl (pH 8.0) and then developed with 0 to 1 M NaCl gradient in the same buffer. The FliN and FliM proteins eluted together; fractions containing the proteins were pooled, and saturated (NH4)2SO4 was added to obtain a final (NH4)2SO4 concentration of 0.5 M. The solution was loaded onto a phenyl-Sepharose column equilibrated in 50 mM Tris-HCl (pH 8.0)–0.5 M (NH4)2SO4 and proteins were eluted with a 0.5 to 0 M (NH4)2SO4 gradient. Fractions containing FliN plus FliM were pooled, concentrated by ultrafiltration, and loaded onto a Superdex-200 column. The column was run in 50 mM Tris-HCl (pH 8.0)–200 mM NaCl. Fractions containing FliN plus FliM were identified by Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pooled, and concentrated by ultrafiltration.

For purification of FliN plus FliN, clarified lysate (typically ~200 ml) was loaded directly onto a Q-Sepharose column (Pharmacia), which was washed with ~500 ml of 50 mM Tris-HCl (pH 8.0) and then developed with 0 to 1 M NaCl gradient in the same buffer. The FliN and FliM proteins eluted together; fractions containing the proteins were pooled, and saturated (NH4)2SO4 was added to obtain a final (NH4)2SO4 concentration of 0.5 M. The solution was loaded onto a phenyl-Sepharose column equilibrated in 50 mM Tris-HCl (pH 8.0)–0.5 M (NH4)2SO4 and proteins were eluted with a 0.5 to 0 M (NH4)2SO4 gradient. Fractions containing FliN plus FliM were pooled, concentrated by ultrafiltration, and loaded onto a Superdex-200 column. The column was run in 50 mM Tris-HCl (pH 8.0)–200 mM NaCl. Fractions containing FliN plus FliM were identified by Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pooled, and concentrated by ultrafiltration.
incorporating a distribution of sedimentation coefficients by using the software package DCDT (60).

FliN/FliM ratio in purified complex. The purified FliM-FliN complex was dissociated in SDS-PAGE loading buffer, and the subunits were resolved on 15% polyacrylamide gels. The gels were stained with Coomassie blue and bands were quantitated by using video densitometry and the program NIH-IMAGE. The crystals used for data collection typically were 200 by 50 by 50 μm. The crystals grew to full size in about 12 h. The crystals used for data collection were 200 by 50 by 50 μm.

Crystallization and data collection. Following sizing crystallography, FliN was concentrated to 3 mg/ml. Crystals were grown at room temperature in sitting drop trays with a well solution containing 18% (vol/vol) 2-methyl-2,4-pentanediol and 100 mM morpholineethanesulfonic acid (MES) (pH 5.9). The drops were set up with a ratio of well solution to protein of 1:1. The crystals grew to full size in about 12 h. The crystals used for data collection typically were 200 by 50 by 50 μm.

Structure determination and refinement. The crystal structure of a similar but slightly smaller *T. maritima* FliN construct was recently solved by the Joint Center for Structural Genomics (PDB accession code 1O6A). We were able to obtain phases for our data by performing molecular replacement using the programs AMORE (52) and MOLREP (73) and the coordinates for 1O6A. The crystals belonged to space group P3121 with the following unit cell dimensions: a = 100.2 Å and c = 87.9 Å. The asymmetric unit contained two FliN molecules, and the solvent content was approximately 70%.

RESULTS

FliN from *T. maritima* functions in *E. coli*. For the structural study and certain other experiments below we used the FliN protein from *T. maritima*, whereas previous information on FliN function and localization has come mainly from studies of *Salmonella enterica* serovar Typhimurium (19, 27, 81) or *E. coli* (65, 67). *T. maritima* is a hyperthermophile with a single polar flagellum (25). The amino acid sequences of *T. maritima* and *E. coli* FliN are 39% identical overall and 55% identical in the segment that is most important for function and whose structure is described below. To further validate the use of the *T. maritima* protein, we used a soft-agar swarming assay to test the ability of the *T. maritima* fliN gene to complement an *E. coli* fliN-null strain. fliN-null cells are nonflagellate, immotile, and unable to swarm in soft agar (65). When transformed with a plasmid expressing the *T. maritima* fliN construct, the cells swarmed at a rate that was about 20% of the wild-type rate (Fig. 2). When examined under the microscope, cells expressing *T. maritima* FliN showed fair motility but were more tumbling than wild-type cells. This functional complementation indicates that *T. maritima* FliN provides a valid structural model for the protein from *E. coli.*

Crystal structure of FliN. A construct encompassing residues 23 to 154 of *T. maritima* FliN was overexpressed in *E. coli* and purified, and it formed crystals that diffracted to a resolution of about 4 Å. Selenomethionine-substituted protein was

TABLE 1. Data collection statistics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (Å)</td>
<td>0.979277</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>87.7–3.4 (3.6–3.4)*</td>
</tr>
<tr>
<td>Highest-resolution shell (Å)</td>
<td>3.52–3.4</td>
</tr>
<tr>
<td>No. of observed reflections</td>
<td>80,998</td>
</tr>
<tr>
<td>No. of unique reflections</td>
<td>7,246</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>95.9 (93.4)</td>
</tr>
<tr>
<td>R_sym (%)</td>
<td>7.0 (28.9)</td>
</tr>
<tr>
<td>Avg I/σ(I)</td>
<td>7.3 (1.8)</td>
</tr>
<tr>
<td>Mosaicity (°)</td>
<td>0.351</td>
</tr>
</tbody>
</table>

* The values in parentheses are data for the highest-resolution shell.

TABLE 2. Refinement statistics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution range (Å)</td>
<td>87.7–3.4 (3.6–3.4)*</td>
</tr>
<tr>
<td>No. of reflections in working set</td>
<td>6,906</td>
</tr>
<tr>
<td>No. of reflections in free-R set</td>
<td>340</td>
</tr>
<tr>
<td>No. of protein atoms</td>
<td>1,352</td>
</tr>
<tr>
<td>R factor (%)</td>
<td>22.4 (33.7)</td>
</tr>
<tr>
<td>Free-R factor (%)</td>
<td>28.6 (41.7)</td>
</tr>
<tr>
<td>RMSD (bond lengths) (Å)</td>
<td>0.014</td>
</tr>
<tr>
<td>Radv (bond angles) (°)</td>
<td>1.76</td>
</tr>
<tr>
<td>% of φ and ψ angles*</td>
<td>77.3</td>
</tr>
<tr>
<td>Additional allowed</td>
<td>20.0</td>
</tr>
<tr>
<td>Generously allowed</td>
<td>1.3</td>
</tr>
<tr>
<td>Disallowed</td>
<td>1.3</td>
</tr>
</tbody>
</table>

* The values in parentheses are data for the highest resolution shell.

FIG. 2. Complementation of the fliN-null strain DFB223 by the fliN gene from *T. maritima*. This strain has an in-frame chromosomal deletion of fliN (65). Plasmid pPNB10 encodes residues 23 to 154 of the *T. maritima* FliN protein. A tryptone plate containing 0.28% Bacto agar (Difco) was spotted with 1 μl of an overnight culture of each strain and incubated at 32°C for 24 h.
similarly purified and crystallized, and data were collected at three wavelengths near the selenium edge, at a resolution of 3.4 Å. Anomalous scattering from selenium was detectable, but the quality of the data was not sufficient to allow phase determination. Phases for the best 3.4-Å data set (Table 1) were eventually obtained by molecular replacement using coordinates for a T. maritima FliN structure determined by the Joint Center for Structural Genomics and released to the Protein Data Bank in November 2003 (accession code 1O6A). The FliN molecule is a dimer. Simulated-annealing omit maps gave interpretable electron density for residues 68 to 152 of chain A and residues 68 to 154 of chain B. Forty-five residues at the N terminus of each chain were not visible, presumably because they were less ordered. The structure was rebuilt and refined at a 3.4-Å resolution to an R factor (Rfree) of 22.4% (28.6%) (Table 2), with good geometry. The resulting structure is very similar to the structure of 1O6A overall, with a root mean square deviation (RMSD) of 0.9 Å for main-chain atoms in the central portion of the molecule (residues 80 to 150). Like the present structure, 1O6A did not show clear electron density for parts N terminal of residue 68.

The FliN dimer is roughly the shape of a saddle, and the overall dimensions are 60 by 35 by 30 Å (Fig. 3). The two chains in the crystallographic asymmetric unit are similarly folded (RMSD for main-chain atoms, 0.4 Å) and are related by an approximate twofold axis. Each chain contains three α helices and five β strands. The two chains intertwine to form two β barrels near the middle of the molecule, each containing strands from both subunits. The subunits are held together by extensive β-strand interactions, chiefly between the β1 strands of the two chains and between β2 of one chain and β5 of the other. Each end of the molecule is capped by a group of three helices, α2 from one subunit and α1 and α3 from the other. Helices α2 and α3 are packed against each other and against the rest of the molecule. Helix α1 is directed away from the main body of the molecule and is positioned differently in our structure than in 1O6A, implying that its location is influenced by crystal packing forces (Fig. 3B).

Conserved hydrophobic residues are found in the buried core of the protein and also in a patch on the protein surface. Conservation of buried hydrophobic residues is not unusual and indicates that the various FliN homologs shown in Fig. 4 have similar folds. Several conserved hydrophobic side chains (primarily Leu85, Thr110, Val128, Val130, and Phe135) form a patch on the protein surface that is centered on the twofold axis (Fig. 5). These hydrophobic residues do not appear to have critical structural roles, and so their conservation might

are labeled α1 to α3. The dimer twofold axis is vertical in the top diagram, and the view in the lower diagram is along the twofold axis, from the top of the dimer as viewed in the top diagram. (B) FliN structure solved in this study (left), 1O6A FliN structure (right), and overlay of the two structures (middle). The view is along the twofold dimer axis, but from the direction opposite that in the lower diagram in panel A. The major difference is in the position of helix α1, as indicated. (C) Simulated annealing omit map computed by using CNS (10), with the following residues omitted: residues 103 to 105 (top strand), 126 to 129 (bottom strand), and 134 to 138 (middle strand). NCS restraints were not applied during the simulated annealing refinement. The Fo – Fc map is contoured at 3.5 × RMSD.
indicate a specific functional role for this part of the protein surface.

Association state of FliN and a stable FliM-FliN complex. The crystal structure shows that FliN is likely to be a dimer or a larger molecule in solution. To study the association state of FliN in solution, we performed analytical ultracentrifugation experiments with purified FliN proteins from both *T. maritima* and *E. coli*. *T. maritima* FliN behaved like a single species in sedimentation equilibrium experiments, with a molecular mass (30.2 kDa) indicating a dimer (calculated dimer molecular mass, 30.2 kDa) (Fig. 6). A dimer-tetramer equilibrium model was also tested, but the fits were not significantly better and only trace amounts of tetramer were predicted (data not shown). The *E. coli* protein also behaved like a single species in sedimentation equilibrium experiments, with a molecular mass (59.6 kDa) indicating a tetramer (calculated molecular mass, 59.4 kDa) (Fig. 6). In velocity-sedimentation experiments, *E. coli* FliN behaved like a single species, with a sedimentation coefficient of 3.1 S, which is smaller than expected for a globular tetramer but too large for a dimer (Fig. 7). Assuming a typical level of hydration (0.5 g of water per g of protein), the shape factor for the FliN tetramer is ~1.4, indicating an elongated shape.

FliN and FliM coassemble into nascent flagella during the early step of C-ring formation (37, 42), and the proteins were shown to bind to each other in blot overlay experiments (70) and pull-down assays (67). To examine the state of purified FliM and FliN in solution, we coexpressed *T. maritima* FliN and FliM in cells and purified them by column chromatography. FliM and FliN remained together through ion-exchange, hydrophobic affinity, and gel filtration steps, which resulted in a stable, soluble complex that contained only the two proteins. The good solubility of FliM and FliN together is in contrast with the solubility of FliM alone (from either *T. maritima* or *E. coli*), which forms inclusion bodies when it is overexpressed (54, 76; unpublished results with *T. maritima* FliM). The FliM-FliN complex had an apparent molecular mass of 140 kDa as determined by gel filtration. In sedimentation equilibrium experiments the complex behaved like a single species having a molecular mass of 98.6 kDa (Fig. 6). The complex appears to be quite stable, as it did not dissociate even at protein concentrations in the nanomolar range.

The experimentally estimated molecular mass (98.6 kDa) is very close to the value expected for a FliM-FliN complex (calculated molecular mass, 98.5 kDa), but it might also fit a FliM2-FliN2 complex (106 kDa), given the uncertainties. To estimate the relative levels of FliM and FliN in the complex, we quantified the proteins on Coomassie blue-stained gels (Fig. 6).
The FliN/FliM ratio estimated in this way was 3.2:1. A similar experiment in which silver staining was used gave a FliN/FliM ratio of 4.2:1 (data not shown). The measured FliN/FliM ratio is thus consistent with the subunit composition FliM1-FliN4 and rules out the composition FliM2-FliN2.

The FliM-FliN complex behaved like a single species in velocity-sedimentation experiments, with a sedimentation coefficient of 5.3 S (Fig. 7). When we used the mass determined by sedimentation equilibrium and hydration like that assumed for isolated FliN, the calculated shape factor was ~1.1, which indicates that the shape of the FliM-FliN complex is less eccentric than the shape of FliN alone.

Comparison to HrcQB: a model for the FliN tetramer. HrcQB is a paralog of FliN that functions in the type III secretion apparatus of the phytopathogen *Pseudomonas syringae* (3, 16, 26). HrcQB and FliN show significant sequence similarity (see Fig. S1 in the supplemental material), and the recently reported crystal structure of the C-terminal domain of HrcQB (HrcQBC) has a fold very similar to that of FliN (16) (PDB accession code 109Y). Like FliN, the subunits of HrcQBC intertwine to form dimers, but the HrcQBC dimers are further associated into tetramers in the crystal. The association between HrcQBC dimers buries more than 1,200 Å² of surface and is stabilized by hydrophobic interactions, hydrogen bonds between backbone segments in an antiparallel β-strand arrangement, and hydrogen bonds between side chains. The sedimentation experiments with FliN showed that it also forms tetramers, either by itself (the *E. coli* protein) or in a complex with FliM (the *T. maritima* proteins). The large shape factor of the FliN tetramer suggests that it has an elongated shape, as does the HrcQBC tetramer. The dimer-dimer interface in HrcQBC is formed in part from the hydrophobic residues Ile85, Val111, and Val113 (the residue numbers are the numbers for the full HrcQBC sequence; the numbers used in PDB entry 109Y are 44 lower). Hydrophobic character is conserved at the corresponding positions in FliN (Ile103, Val129, and Ile131 in *T. maritima* FliN) (Fig. 4). These correspondences suggest that the FliN tetramer may have a subunit arrangement similar to that of HrcQBC. Accordingly, we used the HrcQBC structure as a guide in docking two FliN dimers together to form a model for the tetramer.

As noted above, the dimer-dimer interface in HrcQBC is stabilized by four hydrogen bonds between backbone atoms, as well as by hydrophobic interactions. The initial FliN tetramer model was constructed by manually aligning the dimers to bring together the backbone hydrogen bonding groups (Val130 O to Asp132 N and Ile103 O to Ile103 N, and their symmetry-related counterparts). The structure was then energy minimized by using a utility in Swiss-PDB viewer (22). Following energy minimization, the four backbone H bonds were retained, and more than 1,600 Å² of surface was buried, including the hydrophobic residues Ile103, Val129, and Ile131 (Fig. 9). The dimer-dimer interface of the energy-minimized structure was also stabilized by hydrogen bonds between the side chains of residues Glu105, Asp132, Arg138, and Glu105. The sequence alignment shows that these residues retain hydrogen bond donor or acceptor potential in most FliN proteins, and the corresponding residues in HrcQBC (Glu87, Glu114, and Gln120) contribute most of the interdimer hydrogen bonds in that molecule. Thus, while the details should be considered speculative, the model shows that the main features of the dimer-dimer interface in HrcQBC can be reproduced with FliN. The modeled FliN tetramer is elongated, and the approximate dimensions are 110 by 40 by 35 Å.

Functional importance of the hydrophobic patch. The hydrophobic patches on the dimers (Fig. 5) come together in the tetramer to form a hydrophobic cleft that is approximately 50 Å long (Fig. 10B). Although FliN and HrcQB have similar folds overall, there are clear differences in the segment that frames the hydrophobic patch (residues 107 to 114 in *T. maritima* FliN) (Fig. 10A). The conformation of this segment appears to be well determined by the crystal structures, because it is the same in our structure as in 1O6A, which involved different crystallization conditions and a different space group. The 107 to 114 segments in the FliN dimer are farther apart than the corresponding segments in HrcQBC, and together with the more hydrophobic character of residues 110 and 130...
FIG. 6. Equilibrium sedimentation of FliN and the FliM-FliN complex. (Top panel) Data for *T. maritima* FliN. The fitted lines correspond to a molecular mass of 30.2 ± 2 kDa (calculated dimer molecular mass, 30.2 kDa). The three graphs give data obtained at different radii, as indicated at the bottom. (Middle panel) Data for *E. coli* FliN. The fitted lines correspond to a molecular mass of 59.6 ± 6 kDa (calculated tetramer molecular mass, 59.4 kDa). (Bottom panel) Data for the *T. maritima* FliM-FliN complex. The fitted lines correspond to a molecular mass of 98.6 ± 3.5 kDa (calculated molecular mass for FliM$_1$-FliN$_4$ complex, 98.5 kDa).
in FliN, this makes the hydrophobic patch larger in FliN than in HrcQB (Fig. 10B and C). The strong conservation of residues that form the hydrophobic patch suggests that it is important for function. To test this proposal, we mutated the \textit{E. coli} fliN gene to replace a well-conserved hydrophobic residue of the patch, Val113, with Asp. This residue corresponds to Val130 in the \textit{T. maritima} protein, as indicated in Fig. 10B (orange). A plasmid encoding the fliN mutation was transformed into the fliN-null strain DFB223 (63), and motility and flagellation were examined. The mutation caused a severe reduction in swarming in soft agar at 32°C (Fig. 11). Cells taken from the edges of the swarms were highly motile when they were viewed with a microscope but swam smoothly, indicating that there was a CCW bias of the flagellar motors. Cells cultured in liquid medium (tryptone broth, 32°C) showed a delay in the onset of motility compared to wild-type cells, and staining showed that there were fewer flagella. At later stages of growth in liquid, mutant cells were highly motile but aberrantly smooth. The motility impairment was more severe when cells were grown in tryptone broth at a higher temperature. Wild-type cells cultured at 38°C exhibited fair motility at the mid-log phase, whereas most cells of the mutant were immotile and nonflagellate.

DISCUSSION

The flagellar C ring is a fairly large structure (in \textit{Salmonella}, it is 45 nm in diameter and 15 nm high) (19, 68, 79) and contains more than 100 subunits of FliN (31). Sedimentation experiments give clues to the arrangement of FliN dimers in the flagellum. Because \textit{E. coli} FliN forms a stable tetramer and \textit{T. maritima} FliN forms a stable FliM\textsubscript{1}-FliN\textsubscript{4} complex, we propose that an FliM\textsubscript{1}-FliN\textsubscript{4} complex is the building block of the C ring. The copy number of FliM in the flagellum has been estimated to be 34 ± 6 (80, 81), and en face electron micrographs of the C ring show subunit structure with a rotational symmetry of about 34-fold, varying slightly from specimen to specimen (69, 79). A typical C ring should then contain about 34 copies of the FliM\textsubscript{1}-FliN\textsubscript{4} unit and therefore 136 copies of FliN, in fair agreement with an experimental estimate of 111 ± 13 (81).

The crystal structure of HrcQB\textsubscript{C} provides a basis for modeling the arrangement of subunits in the FliN tetramer. Patterns of sequence conservation and similar patterns of hydrogen bonding seen in HrcQB\textsubscript{C} and the modeled FliN tetramer support the view that the FliN tetramer has an organization similar to that of HrcQB\textsubscript{C}. An elongated shape for the FliN...
with such an architecture, and partially disrupted C rings sometimes appear to lack portions of the lower layer (32). The C-ring architecture proposed here is probably applicable to a wide range of bacterial species but may not be universal. Certain species (e.g., *Bacillus subtilis*) use the much larger FliY protein in place of FliN (7), and their C rings might be constructed differently.

The present structural study of FliN has some bearing on FliM, because a segment in the C-terminal domain of FliM shows sequence similarity to FliN (46). Several residues are conserved as hydrophobic residues in both proteins, and the structure shows that these residues form much of the core of FliN (Fig. 4; also see Fig. S2 in the supplemental material). The secondary-structure predictions for this part of FliM agree well with the secondary structures seen in the structure of FliN, except that β1 is predicted to be interrupted by a loop in FliM (see Fig. S2 in the supplemental material). Based on the correspondence between the proteins, we propose that the C-terminal domain of FliM is folded like the C-terminal domain of FliN, except that β1 folds back onto itself and β2 and β3 are joined by a reverse turn, which allows the β barrel to be formed from a single chain rather than two chains. This segment of FliM is also the part that binds to FliN (46, 70), and its structural resemblance to FliN may be important for this binding. A similar correspondence has been noted between HrcQB and its binding partner, HrcQA (16).

FliN is essential for flagellar assembly, because deletion of the *fliN* gene results in a nonflagellate phenotype (65). Its functions in assembly are not easily disrupted by point mutations. Irikura et al. (27) analyzed a number of *fliN* mutations and found that flagellar assembly was prevented only by frameshifts or premature termination. Most missense mutations give a *mot* phenotype, in which flagella are assembled but do not rotate. Some rotation was restored when the *mot* mutant proteins were overexpressed, which suggests that the mutations decreased the level of the protein or diminished its ability to form fully functional C rings. The positions of *mot* mutations in the structure appear to be consistent with this suggestion (see Fig. S3 in the supplemental material). One *mot* mutation replaced a fairly well-conserved Gly residue (Gly120 in the *T. maritima* protein) whose ϕ and ψ angles (80° and −10°, respectively) are not as favorable for a larger side chain, one mutation introduced Pro in place of a residue (Leu117) whose ϕ angle (−115°) was incompatible with Pro, and another mutation replaced a fairly well-conserved Pro residue (Pro 78) in the segment that separates α1 from β1. Two *mot* mutations replaced nonpolar residues that are largely buried (positions 92 and 95). The remaining positions that gave a *mot* phenotype (positions 121 and 122) were together on the side surfaces of the tetramer, where they might participate in interactions that stabilize the C ring. One of these mutations (at position 122) was found to cause a reduction in the length of the flagellar hook (43). This might indicate that FliN has a role in binding to hook subunits, as proposed by Makishima and coworkers (43), but it is also consistent with a more general role for FliN in flagellar assembly.

Mutations that affect the CW-CCW bias of the motor (designated che, for nonchemotactic) have been reported for five positions in FliN (27). These mutations occur at the hypothesized dimer-dimer interface (residues 99 and 100 in *T. maritima*).
timae FliN, corresponding to residues 82 and 83 in E. coli or Salmonella) and also in the neighborhood of the hydrophobic patch (positions 111, 127, and 128 in T. maritima) (see Fig. S3 in the supplemental material). One of the mutations near the hydrophobic patch (at position 111) appears to affect not only switching but also flagellar assembly, as shown by a reduction in the length of the flagellar hooks (43). The relative scarcity of motile but nonchemotactic mutants has been taken to indicate that FliN has only a small role in switching (27). Alternatively, FliN might play a critical role in switching, but with only a small part of the protein participating directly. The positions of the che mutations on the structure suggest that the dimer-dimer interface and the hydrophobic patch could have roles in switching. A site-directed mutation in the hydrophobic patch, described below, has a phenotype consistent with this.

In a study to identify important protonatable residues, Zhou et al. replaced several conserved acidic residues in FliN with alanine and found that none were critical for flagellar assembly or function. The positions mutated were positions 72, 76, 107, 112, 115, 127, 133, and 141 (T. maritima positions), most of which are on the sides of the saddle (the faces perpendicular to the hydrophobic patch) (see Fig. S3 in the supplemental material). Although none of the alanine replacements of acidic residues prevented FliN function, many of them resulted in an increase in the level of FliN needed for optimal swarming (82). This might indicate that these residues have a role in stabilizing the protein or facilitating its incorporation into the C ring. Glu127 is near the hydrophobic patch and might have other roles; replacement of this residue with lysine gives a nonchemotactic phenotype (27).

The surface hydrophobic patch is the most conspicuous feature of FliN. In the modeled FliN tetramer, the hydrophobic patches come together to form a ca. 50-Å-long hydrophobic cleft. This hydrophobic surface feature appears to have a function specific to FliN, because it is much smaller on HrcQBC, which is otherwise fairly similar. Sequence alignments show that nonpolar character is well conserved in the residues that form the hydrophobic patch on FliN, and a Val-to-Asp mutation in the patch affected both motor switching (at 30°C) and flagellar assembly (at 38°C), so that swarming was prevented (Fig. 11). We cannot yet assign a particular function to the hydrophobic patch. The reduced flagellation and the CCW motor bias might indicate that FliN functions in both flagellar assembly and CW-CCW switching. While the switching defect is most dramatic, the hydrophobic patch is unlikely to function exclusively in switching because the residues that form it are conserved as hydrophobic residues even in Aquifex aeolicus and Buchnera, organisms that lack CheY and other proteins of the chemotactic signaling pathway (11, 64).

In the fliN mutant characterized by Vogler et al. (75), a temperature-sensitive defect in assembly was shown to result from a block in flagellar export. Further characterization of...
hydrophobic patch mutants should reveal whether they are
defective in flagellar export or in other steps of assembly.
Hydrophobic surface features that look similar are found on
some small heat shock proteins that function as chaperones
(34, 74), and one possibility is that FliN functions as a cochap-
erone for flagellar export by providing docking sites for chap-
erone-cargo complexes. The large structural differences be-
tween FliN and HrcQBC in the region of the hydrophobic
patch (Fig. 10) are consistent with such an export function,
because the virulence factor export apparatus acts on a differ-
ent set of substrates and utilizes different chaperones (15).

ACKNOWLEDGMENTS

We thank F. Whitby, H. Schubert, N.-L. Chan, and B. Howard for
assistance and advice at many stages of this project, D. Mackay and G.
Cortez for assistance with cloning and protein purification, J. Harmon
and K. Paul for assistance with mutagenesis and swarming assays, and
J. S. Parkinson for helpful comments.

This work was supported by grant R01-GM61145 and training grant
5T32-GM08537 from the National Institutes of Health. The protein-
DNA core facility at the University of Utah receives support from the
National Cancer Institute (grant 5P30 CA42014). Portions of this re-
search were carried out at the Stanford Synchrotron Radiation Labo-
ratory, a national user facility operated by Stanford University on
behalf of the U.S. Department of Energy, Office of Basic Energy
Sciences. The SSRL Structural Molecular Biology Program is sup-
ported by the Department of Energy Office of Biological and Envi-
ronmental Research and by the National Institutes of Health National
Center for Research Resources Biomedical Technology Program and
the National Institute of General Medical Sciences.

REFERENCES

Press, New York, N.Y.
chaperone FlgN regulates flagellar assembly via a negative feedback loop
containing its chaperone substrates FlgK and FlgL. Mol. Microbiol. 49:1333–
1345.
pv. syringae lcrA-linked hraA gene encodes an Avr-like protein that acts in an
lcrA-dependent manner within tobacco cells. Mol. Plant-Microbe Interact.
4. Bennett, J. C. Q., and C. Hughes. 2000. From flagellum assembly to viru-
8:202–204.
hydrophobic patch mutants should reveal whether they are
defective in flagellar export or in other steps of assembly.
Hydrophobic surface features that look similar are found on
some small heat shock proteins that function as chaperones
(34, 74), and one possibility is that FliN functions as a cochap-
erone for flagellar export by providing docking sites for chap-
erone-cargo complexes. The large structural differences be-
tween FliN and HrcQBC in the region of the hydrophobic
patch (Fig. 10) are consistent with such an export function,
because the virulence factor export apparatus acts on a differ-
ent set of substrates and utilizes different chaperones (15).

ACKNOWLEDGMENTS

We thank F. Whitby, H. Schubert, N.-L. Chan, and B. Howard for
assistance and advice at many stages of this project, D. Mackay and G.
Cortez for assistance with cloning and protein purification, J. Harmon
and K. Paul for assistance with mutagenesis and swarming assays, and
J. S. Parkinson for helpful comments.

This work was supported by grant R01-GM61145 and training grant
5T32-GM08537 from the National Institutes of Health. The protein-
DNA core facility at the University of Utah receives support from the
National Cancer Institute (grant 5P30 CA42014). Portions of this re-
search were carried out at the Stanford Synchrotron Radiation Labo-
ratory, a national user facility operated by Stanford University on
behalf of the U.S. Department of Energy, Office of Basic Energy
Sciences. The SSRL Structural Molecular Biology Program is sup-
ported by the Department of Energy Office of Biological and Envi-
ronmental Research and by the National Institutes of Health National
Center for Research Resources Biomedical Technology Program and
the National Institute of General Medical Sciences.

REFERENCES

Press, New York, N.Y.
chaperone FlgN regulates flagellar assembly via a negative feedback loop
containing its chaperone substrates FlgK and FlgL. Mol. Microbiol. 49:1333–
1345.
pv. syringae lcrA-linked hraA gene encodes an Avr-like protein that acts in an
lcrA-dependent manner within tobacco cells. Mol. Plant-Microbe Interact.
4. Bennett, J. C. Q., and C. Hughes. 2000. From flagellum assembly to viru-
8:202–204.
hydrophobic patch mutants should reveal whether they are
defective in flagellar export or in other steps of assembly.
Hydrophobic surface features that look similar are found on
some small heat shock proteins that function as chaperones
(34, 74), and one possibility is that FliN functions as a cochap-
erone for flagellar export by providing docking sites for chap-
erone-cargo complexes. The large structural differences be-
tween FliN and HrcQBC in the region of the hydrophobic
patch (Fig. 10) are consistent with such an export function,
because the virulence factor export apparatus acts on a differ-
ent set of substrates and utilizes different chaperones (15).

ACKNOWLEDGMENTS

We thank F. Whitby, H. Schubert, N.-L. Chan, and B. Howard for
assistance and advice at many stages of this project, D. Mackay and G.
Cortez for assistance with cloning and protein purification, J. Harmon
and K. Paul for assistance with mutagenesis and swarming assays, and
J. S. Parkinson for helpful comments.

This work was supported by grant R01-GM61145 and training grant
5T32-GM08537 from the National Institutes of Health. The protein-
DNA core facility at the University of Utah receives support from the
National Cancer Institute (grant 5P30 CA42014). Portions of this re-
search were carried out at the Stanford Synchrotron Radiation Labo-
ratory, a national user facility operated by Stanford University on
behalf of the U.S. Department of Energy, Office of Basic Energy
Sciences. The SSRL Structural Molecular Biology Program is sup-
ported by the Department of Energy Office of Biological and Envi-
ronmental Research and by the National Institutes of Health National
Center for Research Resources Biomedical Technology Program and
the National Institute of General Medical Sciences.

REFERENCES

Press, New York, N.Y.
chaperone FlgN regulates flagellar assembly via a negative feedback loop
containing its chaperone substrates FlgK and FlgL. Mol. Microbiol. 49:1333–
1345.
pv. syringae lcrA-linked hraA gene encodes an Avr-like protein that acts in an
lcrA-dependent manner within tobacco cells. Mol. Plant-Microbe Interact.
4. Bennett, J. C. Q., and C. Hughes. 2000. From flagellum assembly to viru-
8:202–204.
hydrophobic patch mutants should reveal whether they are
defective in flagellar export or in other steps of assembly.
Hydrophobic surface features that look similar are found on
some small heat shock proteins that function as chaperones
(34, 74), and one possibility is that FliN functions as a cochap-
erone for flagellar export by providing docking sites for chap-
erone-cargo complexes. The large structural differences be-
tween FliN and HrcQBC in the region of the hydrophobic
patch (Fig. 10) are consistent with such an export function,
because the virulence factor export apparatus acts on a differ-
ent set of substrates and utilizes different chaperones (15).

ACKNOWLEDGMENTS

We thank F. Whitby, H. Schubert, N.-L. Chan, and B. Howard for
assistance and advice at many stages of this project, D. Mackay and G.
Cortez for assistance with cloning and protein purification, J. Harmon
and K. Paul for assistance with mutagenesis and swarming assays, and
J. S. Parkinson for helpful comments.

This work was supported by grant R01-GM61145 and training grant
5T32-GM08537 from the National Institutes of Health. The protein-
DNA core facility at the University of Utah receives support from the
National Cancer Institute (grant 5P30 CA42014). Portions of this re-
search were carried out at the Stanford Synchrotron Radiation Labo-
ratory, a national user facility operated by Stanford University on
behalf of the U.S. Department of Energy, Office of Basic Energy
Sciences. The SSRL Structural Molecular Biology Program is sup-
ported by the Department of Energy Office of Biological and Envi-
ronmental Research and by the National Institutes of Health National
Center for Research Resources Biomedical Technology Program and
the National Institute of General Medical Sciences.

REFERENCES

Press, New York, N.Y.
chaperone FlgN regulates flagellar assembly via a negative feedback loop
containing its chaperone substrates FlgK and FlgL. Mol. Microbiol. 49:1333–
1345.

