Crystal Structure of Defensin HNP-3, an Amphiphilic Dimer: Mechanisms of Membrane Permeabilization

Christopher P. Hill; Jeff Yee; Michael E. Selsted; David Eisenberg

Stable URL:
http://links.jstor.org/sici?sici=0036-8075%2819910322%293A251%3A5000%3C1481%3ACSODHA%3E2.0.CO%3B2-5

Science is currently published by American Association for the Advancement of Science.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aaas.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact jstor-info@umich.edu.

http://www.jstor.org/
Thu Dec 18 19:56:36 2003
Crystal Structure of Defensin HNP-3, An Amphiphilic Dimer: Mechanisms of Membrane Permeabilization

CHRISTOPHER P. HILL, JEFF YEE,* MICHAEL E. SELSTED,‡ and DAVID EISENBERG

Defensins (molecular weight 3500 to 4000) act in the mammalian immune response by permeabilizing the plasma membranes of a broad spectrum of target organisms, including bacteria, fungi, and enveloped viruses. The high-resolution crystal structure of defensin HNP-3 (1.9 angstrom resolution, R factor 0.19) reveals a dimeric beta sheet that has an architecture very different from other lytic peptides. The dimeric assembly suggests mechanisms by which defensins might bind to and permeabilize the lipid bilayer.

NEUTROPHILS CONSTITUTE 50 TO 70% OF THE TOTAL WHITE BLOOD CELLS IN HUMANS. THEY PLAY A VITAL ROLE IN THE IMMUNE RESPONSE BY INGESTING INVADING MICROORGANISMS, WHICH ARE THEN DESTROYED BY ONE OF TWO GENERAL MECHANISMS. THE "OXYGEN-DEPENDENT" MECHANISM RESULTS FROM THE PRODUCTION OF SUPEROXIDE, WHICH IS CONVERTED TO POTENT OXIDANTS TERMED "REACTIVE OXYGEN INTERMEDIATES" (1). THE OTHER, "OXYGEN-INDEPENDENT," DEFENSE MECHANISM OCCURS WHEN THE MICROBIALCYOTOXIC PROTEINS OF CYTOPLASMIC GRANULES ARE DISCHARGED INTO THE PHAGOCYTIC VACUOLE (2). DEFENSINS ACCOUNT FOR ~30% OF THE TOTAL PROTEIN IN HUMAN AZUROPHIL GRANULES (3). THEY ARE SMALL (MOLAR WEIGHT 3500 TO 4000), CATIONIC, DISULFIDE CROSS-LINKED PROTEINS THAT SHOW IN VITRO ACTIVITY AGAINST GRAM-NEGATIVE AND GRAM-POSITIVE BACTERIA (3, 4), FUNGI (5), MAMMALIAN CELLS (6), AND ENVELOPED VIRUSES (7). THE WORK OF LEHRER AND COLLEAGUES SHOWS THAT DEFENSINS PERMEABILIZE BOTH THE INNER AND OUTER MEMBRANES OF ESCHERICHIA COLI, AND THAT INNER-MEMBRANE PERMEABILIZATION IS COINCIDENT WITH CELL DEATH (8). A MEMBRANE POTENTIAL IS APPARENTLY REQUIRED FOR DEFENSIN ACTION, SINCE CELLS ARE KILLED ONLY WHEN METABOLICALLY ACTIVE AND THEY ARE PROTECTED BY MEMBRANE-DEPOLARIZING AGENTS SUCH AS CARBONYLICANIDE M-CHLOROPROPRANILIDE.

REFERENCES AND NOTES

6. B. L. Jacobson et al., ibid., in press.

11. The expression vectors and methods used in the E. coli have been described (6). Mutations of Ser1 to Gly, Ser19 to Ala, and Ser19 to Cys and were directed by oligonucleotides 5'GGCCACCCAGGTTTCTGCTC-3', 5'-GGCCACCGAACGTTTCT-3', and 5'-GGCCACCCAGGTTTCT-3', respectively, where the bold underlined base indicates mismatches. In each mutagenesis, the entire SBD gene was sequenced to ensure that the desired mutation was attained.

12. Proteins were purified from a 1-liter growth of appropriate mutant E. coli cells with the use of the method previously described for the wild-type SBD (3, 6). Purification of SBD with this method is achieved mainly by the use of DEAE-53 ion exchange chromatography. The Ala19 and Gly19 SBD mutants were further purified by high-performance liquid chromatography (HPLC) with a preparative Synchrop Q300 anion exchange column. In the purification of the Ser19 SBD mutant, the arginine captothexanol was added to all solutions to a final concentration of 1:1 mM. Moreover, after chromatography on a DEAE column, the mutant protein was further purified by isoelectric focusing (ampholyte pH 6 to 8) with a Bio-Rad Rotofor Preparative IEF Cell. Protein purity was determined by SDS-polyacrylamide gel electrophoresis and isoelectric focusing with Pharmacia’s PhastGel. Protein concentration was determined spectrophotometrically by using an extinction coefficient of 1.2 ml mg–1 cm–1 (7).

13. Note that the binding activity of Gly19 and Ala19 SBD mutants was measured at pH 7.5, at the pH at which the wild-type protein activity is normally measured (7). The Cys19 SBD mutant had maximal activity at about pH 6.0 (see Table 1).

18. We thank B. L. Jacobson, J. C. Sparling, and P. S. Vermersch for their assistance and helpful discussions. Supported in part by grants from NIH and the Welch Foundation.

10 October 1990; accepted 27 December 1990

22 MARCH 1991

REPORTS 1481
rophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP) (8, 9). This result is consistent with the observation that defensins form voltage-dependent channels in lipid bilayers, a process that apparently involves aggregation of two to four molecules (10). These data strongly suggest that defensins kill by permeabilizing the membrane; so does their broad specificity, which includes enveloped but not naked viruses (7).

To understand further the mechanism of defensin action we have determined the crystal structure of the defensin HNP-3 by the method of isomorphous replacement (Table 1) and refined the atomic model to an R factor of 0.19 against 1.9 Å data (Table 2). The structure we see is remarkable in being quite unlike that of other membrane-permeabilizing proteins. Other lytic or membrane-permeabilizing peptides have been characterized, including melittin (11), cecropin (12), magainin (13), alamethicin (14), and ß-hemolysin (15). All of these are amphiphilic α helices that contain no ß sheet and have no disulfide bonds. In sharp contrast, defensin is an all-ß-sheet protein with no α helix, and it is stabilized by three disulfide bonds. The few membrane-permeabilizing proteins that do contain significant amounts of ß sheet are either circular peptides, such as gramicidin S (16), or contain ß-amino acids, such as gramicidin A (17, 18), or, like porin (19), are much larger than defensin.

Defensin is an elongated, ellipsoidal molecule with overall dimensions of 26 Å by 15 Å by 15 Å (Fig. 1A). The structure is

Fig. 1. (A) Stereoview of the polypeptide backbone of the defensin monomer, with selected side chains labeled, including the six Cys residues that form S-S bonds. The four Arg side chains are shown; two of them, Arg13 and Arg28, could not be located during the crystallographic analysis but are included here in low-energy conformations. (B) Pattern of hydrogen bonding in the defensin dimer. The disulfide bridges are shown as lightning bolts, and several residues referred to in the text are noted by one-letter symbols (39). (C) Ca plot of the dimer viewed along the two central ß strands of (B). The local twofold axis is vertical. Twisting and coiling of the sheet produces a pseudo barrel, in which a virtual seventh strand is formed by ordered solvent molecules, which are shown as crosses. The center of the barrel is packed with hydrophobic side chains. (D) Molecule A and B amino-terminal ß strands are hydrogen-bonded to each other through ordered solvent. Five water molecules occupy a mini-channel that completely crosses the dimer. The view here is down the local twofold axis. Possible hydrogen bonds are shown with dashed lines. The Fσo − Fσd map was computed with all water molecules deleted from the model; it was contoured at 3.5 times the root-mean-square deviation. (E) Space-filling representation of the dimer with the local twofold axis vertical and viewed along the solvent mini-channel, which can be seen at the top center. Carbon atoms, yellow; sulfur, brown; uncharged nitrogen, light blue; charged nitrogen, blue; uncharged oxygen, pink; and charged oxygen, red. Notice that the base of the basket is apolar, as shown by the hydrophobic moment (black arrow), which points toward the base.
The observed dimeric association suggests several hypotheses for the killing mechanism of defenses, as discussed below.

The shape of the dimer resembles a basket with an apolar base and a polar top that includes the two amino termini and the two carboxyl termini (Figs. 1C and 3A). The β sheet both twists and coils, and as a result the amino-terminal β strands of the two neighboring monomers are close together in space (Fig. 1C). These two β strands are hydrogen-bonded together through ordered solvent molecules that form a mini-channel, which passes right through the dimer (Fig. 1, D and E). The core of this basket is hydrophobic and, at the center of the dimer interface, the disulfide bonds between residues 5 and 20 of the two molecules are in van der Waals contact with each other. Six Arg residues form an equatorial ring around the dimer; these side chains are relatively flexible and three of them cannot be located in Fourier maps.

The dimeric crystal structure suggests

Fig. 2. The amino acid sequences of HNP-3 and other defenses (39, 40) are referred to a common numbering scheme. As a result the 30-residue HNP-3 starts with residue number 2 and ends with residue number 31. The disulfide connectivity is indicated and residues are boxed if conserved in at least all but one of the sequences.

Table 1. Data collection and structure determination. HNP-3 was purified as described (34), and crystals were grown at room temperature in 4-μl hanging drops. The drop consisted of a 50:50 mixture of reservoir and 20 mg ml⁻¹ protein in 0.01% acetic acid, the reservoir solution was 15% PEG 8000, 10% isopropanol, 100 mM sodium citrate at pH 4.0. Crystals usually grew in about 4 days and were harvested into the reservoir solution without loss of diffraction properties. The space group is I222 with a = 30.8 Å, b = 45.0 Å, and c = 40.3 Å. There are two defense monomers in the asymmetric unit, and the crystal contains 88% solvent. These HNP-3 crystals are apparently isomorphous to one of the forms reported for the closely related HNP-1 (35). A total of six derivatives were identified by locating the heavy-atom positions by using Patterson and Fourier methods. Inspection of several Fourier maps showed density that clearly correspond to a Trp side chain. Once this feature had been recognized, many maps calculated with the use of different combinations of derivatives, with and without solvent flattening (36), were assayed by the quality of this Trp density. The best map was that calculated from K₂Pr(CN)₄ (20 mM, 24-hour soak, three sites) and Pr(NH₄)₂(NO₃)₂Cl₂ derivatives (13 mM, 4-5-day soak, one site) after solvent flattening. Maps phased on both of these derivatives but before solvent leveling, or based on just the K₂Pr(CN)₄ derivative after solvent flattening, were also of high quality. The mean figure of merit after solvent flattening was 0.73. These three maps were displayed on an Evans and Sutherland PS390, and an atomic model was easily fitted with the program FRODO (37).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Native</th>
<th>K₂Pr(CN)₄</th>
<th>Pr(NH₄)₂(NO₃)₂Cl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.m.m.²</td>
<td>0.16</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Resolution limit (d.min., Å)</td>
<td>1.9</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Observed reflections (no.)</td>
<td>22,975</td>
<td>18,558</td>
<td>16,019</td>
</tr>
<tr>
<td>Rejected during processing (no.)</td>
<td>1,617</td>
<td>179</td>
<td>850</td>
</tr>
<tr>
<td>Unique reflections (no.)</td>
<td>4,524</td>
<td>2,390</td>
<td>2,128</td>
</tr>
<tr>
<td>% Complete</td>
<td>(95.9)</td>
<td>(99.5)</td>
<td>(99.4)</td>
</tr>
<tr>
<td>F(>2σ) (%)</td>
<td>96.7</td>
<td>97.7</td>
<td>98.9</td>
</tr>
<tr>
<td>R.m.m.</td>
<td>0.054</td>
<td>0.048</td>
<td>0.057</td>
</tr>
<tr>
<td>R.m.m.(F=0)</td>
<td>1.38</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>R.m.m.(F=0)</td>
<td>1.57</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>R.cuts</td>
<td>0.53</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>

* R.m.m. = Σ|F(obs)-|F(calc)|/Σ|F(obs)|, † R.m.m.(F=0) = Σ|F(obs)-|F(calc)|/Σ|F(calc)|; this value is calculated before rejecting any observations. F(obs) is the heavy-atom structure factor and E is the residual lack of closure. $R_{c} =$ (Σ|F(calc)|/Σ|F(calc)|)²/|F(calc)|.

22 MARCH 1991

REPORTS 1483
Fig. 3. (A) Schematic representation of the dimer basket. The top is hydrophilic, and the base is hydrophobic (shaded). Six flexible Arg residues are distributed around the middle. The solvent mini-channel is indicated. The local twofold is vertical. (B) Wedge hypothesis. The hydrophobic surface of the dimer is buried into the lipid bilayer, disrupting the lipid-lipid interactions and perhaps permeabilizing the membrane. (C) Dimer-pore hypothesis. Two dimers stack top to top with their bottom hydrophobic surfaces (shaded) facing lipid tails. Association of the hydrophilic top surfaces is stabilized by charge complementarity. Two solvent mini-channels (stipled) cross the bilayer. (D) General-pore hypothesis. This cross section shows just two defensin dimers. In order to complete the pore, more dimers must be added in front and back. Modeling suggests that at least four dimers are required to complete this type of pore, which could include many defensin molecules and become very large.

The dimer does this by burying the hydrophobic surface into the bilayer while the Arg guanidinium (Gu) groups interact with lipid phosphate groups (Fig. 3B).

Two other possible mechanisms emerge from the structure, both of which involve pore formation. One of these, the dimer pore, makes use of the solvent mini-channel seen in the crystal structure (Fig. 1, D and E). In this model, two dimers assemble in the membrane with their polar tops toward each other and apolar bases facing lipid tails (Fig. 3C). There is some charge complementarity at this putative dimer-dimer interface, especially involving the ion pair Arg and Glu14. The side chains of the six "equatorial" Arg residues move to bind lipid head groups. In this configuration, two of the solvent mini-channels seen in the crystal structure completely span the bilayer.

The other, general-pore, hypothesis also has dimers completely spanning the membrane, but now rotated by ~90° from the "dimer-pore" orientation and with the polar top surface lining the pore (Fig. 3D). The same hydrophobic dimer surface contacts lipid tails, and Arg side chains have again moved to bind head groups. Simple modeling suggests that at least four dimers are required to form this type of pore, which could conceivably become very large and include many defensin dimers.

At this stage it is not possible to tell which, if any, of these three ideas are correct. Indeed they might all have elements of correctness, since a wedge interaction could be the forerunner of either of the other two "pore" models. The concentration dependence of defensin activity (10) might reflect transitions from wedge to dimer-pore to general-pore mechanisms.

Each of the three models requires burying essentially the same hydrophobic surface against the lipid aliphatic chains, binding of the same Arg Gu functions to lipid head groups, and exposing the same hydrophilic surface to a suitable environment. Consequently, consideration of the various defensin sequences may support each model, but will not in general allow us to choose among them. The greatest challenge to the three hypotheses is the presence of Asp16 in NP-3b, which in all the models is buried in the middle of the membrane. Consideration of Arg16 suggests that this is not a fatal flaw in

<table>
<thead>
<tr>
<th>Table 2. Refinement statistics for the atomic model in which the restrained least squares program of Hendrickson was used (38).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinement parameter</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
</tr>
<tr>
<td>Reflections (no.)</td>
</tr>
<tr>
<td>R factor*</td>
</tr>
<tr>
<td>Protein atoms included (no.)</td>
</tr>
<tr>
<td>Protein atoms missing (no.)</td>
</tr>
<tr>
<td>Water molecules included (no.)</td>
</tr>
<tr>
<td>B factor: Wilson plot (2.5–1.9 Å) (Å²)</td>
</tr>
<tr>
<td>B factor: Molecule A average (Å²)</td>
</tr>
<tr>
<td>B factor: Molecule B average (Å²)</td>
</tr>
<tr>
<td>B factor: Solvent average (Å²)</td>
</tr>
<tr>
<td>(1–2) Bond distances (Å)</td>
</tr>
<tr>
<td>(1–3) Angle distances (Å)</td>
</tr>
<tr>
<td>(1–4) Distances (Å)</td>
</tr>
<tr>
<td>Planarity (Å)</td>
</tr>
<tr>
<td>Chiral volumes (Å³)</td>
</tr>
<tr>
<td>Nonbonded contacts (Å)</td>
</tr>
<tr>
<td>Single torsion</td>
</tr>
<tr>
<td>Multiple torsion</td>
</tr>
<tr>
<td>Possible hydrogen bonds</td>
</tr>
<tr>
<td>Conformation torsion angles (degrees)</td>
</tr>
<tr>
<td>Planar (0°, 180°)</td>
</tr>
<tr>
<td>Staggered (±60°, 180°)</td>
</tr>
<tr>
<td>Orthogonal (±90°)</td>
</tr>
</tbody>
</table>

*R = √(Σ(Fobs − Fcalc)²)/Σ(Fobs). †The values are the rms deviations; the target σ values are given in parentheses.
our models; Arg16 is conserved between HNP-3 and NP-3b, and in the HNP-3 crystal structure this Gu forms a hydrogen bond with Thr19 (equivalent to Asp18 of NP-3b). In each of our three hypothetical membrane-bound models the Arg16 side chain can be repositioned so that its methylene groups contact lipid tails while its Gu group binds lipid head groups. Perhaps in NP-3b the Arg16 Gu maintains a salt bridge with Asp18 within the hydrophobic lipid environment. Such intramembrane salt bridges have precedence (32). Despite the high degree of defense sequence variation, the flexibility of Arg side chains and plasticity of the membrane suggests that the different defenses could all interact with membranes in an identical manner.

All three of the hypotheses are consistent with the observation that a membrane potential is required for defense activity (8, 9). In the wedge model the net negative charge on the inside of the cell drives the cationic wedge into the bilayer. In the pore models the potential is required to pull some of the Arg side chains completely across the membrane. All three models also rationalize the observed biphasic binding kinetics (5), in which the first step is predominantly electrostatic (Arg side chains with head groups) and the second of a more hydrophobic nature with lipid functions that are initially cryptic (hydrophobic dimer surface with lipid tails).

Defensin shares more in structural characteristics with small toxins that act by binding to specific receptor proteins than with other lytic peptides. Defensin's overall dimensions, positive charge, \(\beta\) sheet, and disulfide bonds are reminiscent of various snake, scorpion, and spider toxins (33) that function not by permeabilizing the membrane, but by binding molecules such as the acetylcholine receptor. Although similar to these, the defensin structure is quite different from other membrane-permeabilizing peptides. The constrained, disulfide cross-linked structure, common to defensins and the small toxins, may reflect a requirement to maintain a stable and compact conformation to avoid digestion by proteases.

REFERENCES AND NOTES

15 October 1990; accepted 20 December 1990

Cross-Regulatory Interactions Between the Proneural achaete and scute Genes of Drosophila

CARMEN MARTÍNEZ AND JUAN MODELELL

The achaete (ac) and scute (sc) genes of Drosophila allow cells to become sensory organ mother cells. Although ac and sc have similar patterns of expression, deletion of either gene removes specific subsets of sensory organs. This specificity was shown to reside in the peculiar regulation of ac and sc expression. These genes are first activated in complementary spatial domains in response to different cis-regulatory sequences. Each gene product then stimulates expression of the other gene, thus generating similar patterns of expression. Therefore, removal of one gene leads to the absence of both proneural gene products and sensory organs in the sites specified by its cis-regulatory sequences.

The cuticle of Drosophila carries many sensory organs (SOs). The achaete (ac) and scute (sc) genes are necessary for cells to become sensory organ mother cells (SMCs) (1). In the imaginal NMR structure in details. For example, the crystal structure includes residues 4 to 6. This strand has not been described for NP-5, although inspection of stereo figures in (29) indicates that the NMR conformation in this region is similar to that in HNP-3 crystals.

13. Abbreviations for the amino acid residues are A, Ala; Cys, C; Asp, D; Gln, G; Glu, E; His, H; Ile, I; Lys, L; Leu, M; Met, N; Asn, Q; Phe, F; Pro, P; Gln; R; Arg, S; Ser, T; Thr, V; Val, W; Trp; and Y, Tryptophan.
15. J. M. Parvin, K. Fujii, B. Kagan, and A. Pardi for valuable discussions, and NIH for support. Coordinates and diffraction data have been deposited in the Brookhaven Protein Data Bank.

22 MARCH 1991

REPORTS 1485

14. The achaete (ac) and scute (sc) genes of Drosophila allow cells to become sensory organ mother cells. Although ac and sc have similar patterns of expression, deletion of either gene removes specific subsets of sensory organs. This specificity was shown to reside in the peculiar regulation of ac and sc expression. These genes are first activated in complementary spatial domains in response to different cis-regulatory sequences. Each gene product then stimulates expression of the other gene, thus generating similar patterns of expression. Therefore, removal of one gene leads to the absence of both proneural gene products and sensory organs in the sites specified by its cis-regulatory sequences.

The cuticle of Drosophila carries many sensory organs (SOs). The achaete (ac) and scute (sc) genes are necessary for cells to become sensory organ mother cells (SMCs) (1). In the imaginal discs that give rise to the adult epidermis, ac and sc are expressed in groups of cells called the proneural clusters, which delimit the sites where SMCs will develop (2). Although these genes are expressed in similar